skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Doshi, Fenil"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep neural network models provide a powerful experimental platform for exploring core mechanisms underlying human visual perception, such as perceptual grouping and contour integration—the process of linking local edge elements to arrive at a unified perceptual representation of a complete contour. Here, we demonstrate that feedforward convolutional neural networks (CNNs) fine-tuned on contour detection show this human-like capacity, but without relying on mechanisms proposed in prior work, such as lateral connections, recurrence, or top-down feedback. We identified two key properties needed for ImageNet pre-trained, feed-forward models to yield human-like contour integration: first, progressively increasing receptive field structure served as a critical architectural motif to support this capacity; and second, biased fine-tuning for contour-detection specifically for gradual curves (~20 degrees) resulted in human-like sensitivity to curvature. We further demonstrate that fine-tuning ImageNet pretrained models uncovers other hidden human-like capacities in feed-forward networks, including uncrowding (reduced interference from distractors as the number of distractors increases), which is considered a signature of human perceptual grouping. Thus, taken together these results provide a computational existence proof that purely feedforward hierarchical computations are capable of implementing gestalt “good continuation” and perceptual organization needed for human-like contour-integration and uncrowding. More broadly, these results raise the possibility that in human vision, later stages of processing play a more prominent role in perceptual-organization than implied by theories focused on recurrence and early lateral connections. 
    more » « less
    Free, publicly-accessible full text available August 18, 2026
  2. Self-organizing principles provide a computational account for the topographic organization of the high-level visual system. 
    more » « less
  3. Abstract Irradiation increases the yield stress and embrittles light water reactor (LWR) pressure vessel steels. In this study, we demonstrate some of the potential benefits and risks of using machine learning models to predict irradiation hardening extrapolated to low flux, high fluence, extended life conditions. The machine learning training data included the Irradiation Variable for lower flux irradiations up to an intermediate fluence, plus the Belgian Reactor 2 and Advanced Test Reactor 1 for very high flux irradiations, up to very high fluence. Notably, the machine learning model predictions for the high fluence, intermediate flux Advanced Test Reactor 2 irradiations are superior to extrapolations of existing hardening models. The successful extrapolations showed that machine learning models are capable of capturing key intermediate flux effects at high fluence. Similar approaches, applied to expanded databases, could be used to predict hardening in LWRs under life-extension conditions. 
    more » « less